流体的阻力是造成能量损失(即阻力损失)的原因。一种是由于流体的黏滞性和惯性引起的沿程阻力损失;另一种是由于管路界面突然扩大或缩小等原因,固体壁面对流体的阻滞作用和扰动作用引的称为局部阻力损失。
液体阻力损失通常用单位重量流体的能量损失(或称水头损失)h1来表示,气体则常用单位体积内的流体的能量损失(或称压强损失)》p1来表示。
(1)沿程阻力与沿程阻力损失
(2)局部阻力与局部阻力损失
(3)层流阻力与紊流阻力化,显示出不规则性,但是整个流体仍沿着主流方向运动o
在圆管中,流体的流动状态和平均流速v、管径d运动黏滞系数 有关。将上述三个参数合成一个无因次数,称为雷诺数,用Re表示。
实验表明,临界雷诺数值约为20000。雷诺数大于2000时,流态为紊流;雷诺数小于2000时为层流。紊流阻力比层流阻力大得多。
(4)流体能量总损失
根据长期实践的经验,把能量损失的计算问题转化为求阻力系数的问题。把能量损失写成流速水头倍数的形式,在列能量方程时,可以把它与流速水头合并成一项以便于计算。由于影响的因素复杂,公式中两个无因次系数入和串,必须借助分析一些典型的实验成果,用经验的或半经验的方法求得。
流体能量总损失:
流体能量总损失等于各管段沿程损失与各局部损失的总和。
(5)减少阻力的措施
减小管壁的粗糙度和用柔性边壁代替刚性边壁;
防止或推迟流体与壁面的分离,避免旋涡区的产生或减小旋涡区的大小和强度。
对于管道的管件采取的减小阻力措施:一般直径d较小的弯管,合理地采用曲率半径尺,可以减少阻力.截面较大的通风弯管需安装形式合理的导流片,达到减少局部阻力的效果。对于管子截面变化的变径管,应采用一定长度的渐缩管或渐扩管。对于三通或四通可设置导流隔板.
在流体内部投加极少量的添加剂,使其影响流体运动的内部结构来实现减阻。
(6)减少泵与风机的能量损失
泵与风机的能量损失通常其产生原因分为三类,即水力损失、容积损失、机械损失。
水力损失:大小与过流部件的几何形状、壁面粗糙度以及流体的黏性密切相关。水力损失包括:进口损失、撞击损失、叶轮中的水力损失、动压转换和机壳出口损失。